Keras Sequential Model
Keras Dense Layers
Digital Trends
Analytic Vidhya
# Encode
# Split
# Scale
# Importing libraries
import keras
from keras.models import Sequential
from keras.layers import Dense
# Initialize
classifier = Sequential()
# Input and hidden layers
classifier.add(Dense(units = 4, kernel_initializer = 'uniform', activation = 'relu', input_dim = 11))
classifier.add(Dense(units = 4, kernel_initializer = 'uniform', activation = 'relu'))
# Output layer
classifier.add(Dense(units = 1, kernel_initializer = 'uniform', activation = 'sigmoid'))
# Optimization algorithm, loss function, and evaluation metric
classifier.compile(optimizer = 'adam', loss = 'binary_crossentropy', metrics = ['accuracy'])
# regression with tensorflow 2.x
import tensorflow as tf
model = tf.keras.models.Sequential([
tf.keras.layers.Dense(128, input_shape=(2,), activation='relu'),
tf.keras.layers.Dense(1)
])
opt = tf.keras.optimizers.Adam(0.01)
model.compile(optimizer=opt, loss='mse')
r = model.fit(X, y, epochs=100)
# classification with tensorflow 2.x
import tensorflow as tf
model = tf.keras.models.Sequential([
tf.keras.layers.Flatten(input_shape=(28, 28)),
tf.keras.layers.Dense(128, activation='relu'),
tf.keras.layers.Dropout(0.2),
tf.keras.layers.Dense(10, activation='softmax')
])
model.compile(optimizer='adam',
loss='sparse_categorical_crossentropy',
metrics=['accuracy'])
r = model.fit(x_train, y_train, validation_data=(x_test, y_test), epochs=10)